687 research outputs found

    SECURITY, PRIVACY AND APPLICATIONS IN VEHICULAR AD HOC NETWORKS

    Get PDF
    With wireless vehicular communications, Vehicular Ad Hoc Networks (VANETs) enable numerous applications to enhance traffic safety, traffic efficiency, and driving experience. However, VANETs also impose severe security and privacy challenges which need to be thoroughly investigated. In this dissertation, we enhance the security, privacy, and applications of VANETs, by 1) designing application-driven security and privacy solutions for VANETs, and 2) designing appealing VANET applications with proper security and privacy assurance. First, the security and privacy challenges of VANETs with most application significance are identified and thoroughly investigated. With both theoretical novelty and realistic considerations, these security and privacy schemes are especially appealing to VANETs. Specifically, multi-hop communications in VANETs suffer from packet dropping, packet tampering, and communication failures which have not been satisfyingly tackled in literature. Thus, a lightweight reliable and faithful data packet relaying framework (LEAPER) is proposed to ensure reliable and trustworthy multi-hop communications by enhancing the cooperation of neighboring nodes. Message verification, including both content and signature verification, generally is computation-extensive and incurs severe scalability issues to each node. The resource-aware message verification (RAMV) scheme is proposed to ensure resource-aware, secure, and application-friendly message verification in VANETs. On the other hand, to make VANETs acceptable to the privacy-sensitive users, the identity and location privacy of each node should be properly protected. To this end, a joint privacy and reputation assurance (JPRA) scheme is proposed to synergistically support privacy protection and reputation management by reconciling their inherent conflicting requirements. Besides, the privacy implications of short-time certificates are thoroughly investigated in a short-time certificates-based privacy protection (STCP2) scheme, to make privacy protection in VANETs feasible with short-time certificates. Secondly, three novel solutions, namely VANET-based ambient ad dissemination (VAAD), general-purpose automatic survey (GPAS), and VehicleView, are proposed to support the appealing value-added applications based on VANETs. These solutions all follow practical application models, and an incentive-centered architecture is proposed for each solution to balance the conflicting requirements of the involved entities. Besides, the critical security and privacy challenges of these applications are investigated and addressed with novel solutions. Thus, with proper security and privacy assurance, these solutions show great application significance and economic potentials to VANETs. Thus, by enhancing the security, privacy, and applications of VANETs, this dissertation fills the gap between the existing theoretic research and the realistic implementation of VANETs, facilitating the realistic deployment of VANETs

    Support Neighbor Loss for Person Re-Identification

    Full text link
    Person re-identification (re-ID) has recently been tremendously boosted due to the advancement of deep convolutional neural networks (CNN). The majority of deep re-ID methods focus on designing new CNN architectures, while less attention is paid on investigating the loss functions. Verification loss and identification loss are two types of losses widely used to train various deep re-ID models, both of which however have limitations. Verification loss guides the networks to generate feature embeddings of which the intra-class variance is decreased while the inter-class ones is enlarged. However, training networks with verification loss tends to be of slow convergence and unstable performance when the number of training samples is large. On the other hand, identification loss has good separating and scalable property. But its neglect to explicitly reduce the intra-class variance limits its performance on re-ID, because the same person may have significant appearance disparity across different camera views. To avoid the limitations of the two types of losses, we propose a new loss, called support neighbor (SN) loss. Rather than being derived from data sample pairs or triplets, SN loss is calculated based on the positive and negative support neighbor sets of each anchor sample, which contain more valuable contextual information and neighborhood structure that are beneficial for more stable performance. To ensure scalability and separability, a softmax-like function is formulated to push apart the positive and negative support sets. To reduce intra-class variance, the distance between the anchor's nearest positive neighbor and furthest positive sample is penalized. Integrating SN loss on top of Resnet50, superior re-ID results to the state-of-the-art ones are obtained on several widely used datasets.Comment: Accepted by ACM Multimedia (ACM MM) 201

    Mining Label Distribution Drift in Unsupervised Domain Adaptation

    Full text link
    Unsupervised domain adaptation targets to transfer task knowledge from labeled source domain to related yet unlabeled target domain, and is catching extensive interests from academic and industrial areas. Although tremendous efforts along this direction have been made to minimize the domain divergence, unfortunately, most of existing methods only manage part of the picture by aligning feature representations from different domains. Beyond the discrepancy in feature space, the gap between known source label and unknown target label distribution, recognized as label distribution drift, is another crucial factor raising domain divergence, and has not been paid enough attention and well explored. From this point, in this paper, we first experimentally reveal how label distribution drift brings negative effects on current domain adaptation methods. Next, we propose Label distribution Matching Domain Adversarial Network (LMDAN) to handle data distribution shift and label distribution drift jointly. In LMDAN, label distribution drift problem is addressed by the proposed source samples weighting strategy, which select samples to contribute to positive adaptation and avoid negative effects brought by the mismatched in label distribution. Finally, different from general domain adaptation experiments, we modify domain adaptation datasets to create the considerable label distribution drift between source and target domain. Numerical results and empirical model analysis show that LMDAN delivers superior performance compared to other state-of-the-art domain adaptation methods under such scenarios

    Domain Conditioned Adaptation Network

    Full text link
    Tremendous research efforts have been made to thrive deep domain adaptation (DA) by seeking domain-invariant features. Most existing deep DA models only focus on aligning feature representations of task-specific layers across domains while integrating a totally shared convolutional architecture for source and target. However, we argue that such strongly-shared convolutional layers might be harmful for domain-specific feature learning when source and target data distribution differs to a large extent. In this paper, we relax a shared-convnets assumption made by previous DA methods and propose a Domain Conditioned Adaptation Network (DCAN), which aims to excite distinct convolutional channels with a domain conditioned channel attention mechanism. As a result, the critical low-level domain-dependent knowledge could be explored appropriately. As far as we know, this is the first work to explore the domain-wise convolutional channel activation for deep DA networks. Moreover, to effectively align high-level feature distributions across two domains, we further deploy domain conditioned feature correction blocks after task-specific layers, which will explicitly correct the domain discrepancy. Extensive experiments on three cross-domain benchmarks demonstrate the proposed approach outperforms existing methods by a large margin, especially on very tough cross-domain learning tasks.Comment: Accepted by AAAI 202

    Orbital Stability of Solitary Waves for Generalized Symmetric Regularized-Long-Wave Equations with Two Nonlinear Terms

    Get PDF
    This paper investigates the orbital stability of solitary waves for the generalized symmetric regularized-long-wave equations with two nonlinear terms and analyzes the influence of the interaction between two nonlinear terms on the orbital stability. Since J is not onto, Grillakis-Shatah-Strauss theory cannot be applied on the system directly. We overcome this difficulty and obtain the general conclusion on orbital stability of solitary waves in this paper. Then, according to two exact solitary waves of the equations, we deduce the explicit expression of discrimination d′′(c) and give several sufficient conditions which can be used to judge the orbital stability and instability for the two solitary waves. Furthermore, we analyze the influence of the interaction between two nonlinear terms of the equations on the wave speed interval which makes the solitary waves stable

    HSIC Regularized LTSA

    Get PDF
    Hilbert-Schmidt Independence Criterion (HSIC) measures statistical independence between two random variables. However, instead of measuring the statistical independence between two random variables directly, HSIC first transforms two random variables into two Reproducing Kernel Hilbert Spaces (RKHS) respectively and then measures the kernelled random variables by using Hilbert-Schmidt (HS) operators between the two RKHS. Since HSIC was first proposed around 2005, HSIC has found wide applications in machine learning. In this paper, a HSIC regularized Local Tangent Space Alignment algorithm (HSIC-LTSA) is proposed. LTSA is a well-known dimensionality reduction algorithm for local homeomorphism preservation. In HSIC-LTSA, behind the objective function of LTSA, HSIC between high-dimensional and dimension-reduced data is added as a regularization term. The proposed HSIC-LTSA has two contributions. First, HSIC-LTSA implements local homeomorphism preservation and global statistical correlation during dimensionality reduction. Secondly, HSIC-LTSA proposes a new way to apply HSIC: HSIC is used as a regularization term to be added to other machine learning algorithms. The experimental results presented in this paper show that HSIC-LTSA can achieve better performance than the original LTSA
    • …
    corecore